Tetrahedron Letters No. 32, pp 2819 - 2822, 1976. Pergamon Press. Printed in Great Britain.

(Received in UK 1 June 1976; accepted for publication 21 June 1976)

The reaction of $RPX_2 \cdot AIX_3$ complexes (1) with olefines is well known and has been developed as one of the more used methods for the preparation of phosphetanes.¹ The reaction of these complexes with <u>dienes</u> was first illustrated by us in the reaction with 1-allyl cyclohex-1-ene.² It turns out that the reaction is not only limited to [1,4]dienes, but that other [1,n]dienes also react with 1.³ The new compounds illustrated below exhibit the potential synthetic applications, in the phosphaheterocycle field, embodied in this reaction. Addition of 2,4-dimethyl-1, 4-pentadiene(2) to a preformed complex of PhPC1₂ • AlC1₃ in CH₂C1₂ at 0°, gave, following quenching in aq.NaHCO₃ solution, two main compounds 3 and 4 which could be separated by chromatography:compound 3, m.p.113°, $C_{13}H_{17}PO^4$ and compound 4, m.p.78°, $C_{13}H_{17}PO^5$. The NMR spectra^{4,5} of poth compounds indicated the existence of a cyclopropane moiety, which is included in the suggested 3-phosphabicyclo[3.1.0]-hexane structure.²

The other peaks in the NMR spectra are also in accord with the bicyclic structures. Compounds $\underline{3}$ and $\underline{4}$ are believed to differentiate by their P-configuration only. Further support for the structures was obtained from the CMR spectra (Table 1). MePCl₂·AlCl₃ gave with $\underline{2}$ two compounds similar to $\underline{3}$ and $\underline{4}$: compound $\underline{5}$ and compound $\underline{6}$ respectively.

Attempts to determine the P-configuration in both isomer pairs using a shift-reagent⁶, were ambiguous because of the small differences in the line slopes of the C_4 -cyclopropane protons (the ones directed towards the P=0 site in both P-epimers) measured from the δ to Eu(dpm)₃/substrate plot.⁷ The conformation of the phospholane moiety in $\frac{3}{2}-\frac{6}{2}$ (vide infra) must still be established to obtain more reliable conclusions.⁸

The reaction between $\frac{1}{2}$ and the unsubstituted 1,4-pentadiene leads mainly to 3,5-dihalophosphorinanes (7)⁹, accompanied by only minute quantities of the bicyclo[3.1.0]hexane system.

In the latter reaction the AlX_4^{Θ} -quenching of the secondary carbonium ion seems to prevail over the intramolecular double bond attack, which would, in its turn, lead to a bicyclic compound as in the case of 3. The intermediate obtained after the initial attack of one of the 1,4-pentadiene's double bonds, may then undergo ring closure by a consecutive internal attack of the newly formed $R_1 R_2 FAlX_4$ complex (R_1 -being the pentene unit) on the second double bond.

Table - 1

5

13 _C	chemi ca l	shifts	an d	$^{13}C^{-31}P$	nuclear	svin	coupling	constants	for 3	3-6	्व
C	chemical	shifts	and	CP	nuclear	spin	coupling	constants	for 3		5-6

		H_3^C \downarrow P γ H_3^C H_3								
Compound	x	Y	C-2	C-3	C-4	C-5	P-CH3			
3 =	Ph	0	39.9 (66)	26.0 (3)	25.0 (0)	19.3 (13)				
4	0	Ph	38.6 (66)	24.8 (7)	26.3 (0)	19.6 (12)				
5	Me	0	38。5 (64)	24.9 (3)	26.4 (0)	19.5 (14)	16.9 (63)			
ē	0	Me	38,9 (66)	24.8 (6)	27.0 (3)	19.7 (11)	16,9 (62)			

^{a.} Chemical shifts (CDCl₃) in parts per million, relative to carbons of TMS, were determined on a Bruker WH-90 instrument under conditions of proton noise decoupling. ¹³C signals were assigned using known chemical-shift rules and J_{3: p_13C} -values, off-resonance experiments, and intensity comparisons of the proton decoupled spectra with the gated decoupled one. Numbers in parentheses stand for the coupling constants in Hz.

Compounds $\underline{3}-\underline{6}$ as well as $\underline{8}-\underline{11}$ (vide infra) are good models for studying changes in ${}^{3i}p_{-}{}^{13}C$ coupling constants with geometry. The measured ${}^{3}J_{P-C}$ values, for C_4 and C_5 (Table 1), are in accordance with the suggested Karplus relationship of these coupling constants 10 , and lie within the ${}^{3}J$ -range measured in the phosphetime series. 11 Only slight changes with P-epimerization could be observed in $\underline{3}-\underline{6}$ for the ${}^{3}J_{P-C}$ constants. However, the variations in ${}^{2}J_{31\rho_{-}13}C$ values, measured for C_3 with P-substitution and configuration are more significant (Table 1) and may enable conformational analysis of the phospholane moiety in these molecules; further compounds for a more comprehensive study are under preparation.

The first [1,5] diene to be investigated was 2,5-dimethyl-hexa-1,5-diene. A priori this diene may react with $\frac{1}{2}$ in two different ways to give bicyclic compounds: either a bicyclo [3,2,0] heptane (\underline{m}) or a bicyclo[2,2,1] heptane system (\underline{n}).

In the event, under similar conditions to the ones described for the preparation of $\frac{3}{2}$ and $\frac{4}{2}$, two compounds were obtained: compound $\frac{8}{2}$, m.p.147°, $C_{14}H_{19}PO$, ¹² and compound $\frac{9}{2}$, m.p.93°, $C_{14}H_{19}PO$. ¹³ The NMR spectra of the two, ^{12,13} exhibiting two different Me group signals, together with the CMR spectra, showing separate signals for each one of the skeleton carbon atoms (Table 2), establish structure \underline{n} , thus excluding the symmetrical bicyclic[3.2.0]heptane (\underline{m}). Obtaining structure \underline{n} rather than \underline{m} may result from a less strained bicyclic product and/or a better geometrically oreinted transition state leading to this compound. The spectroscopic data, and mainly the CMR, lead us to believe that $\underline{8}$ and $\underline{9}$ are again P-epimers. A second pair of such epimers $\underline{10}$ and $\underline{11}$ were obtained when starting with MePCl₂AlCl₃: compound $\underline{10}$ and compound $\underline{11}$ b.p. 80°/0.1 mm respectively.

Table - 2

 13 C Chemical shifts and 13 C- 31 P nuclear spin coupling constants for <u>8-11</u>.^a

(0) (6)
5.8 32.3
(0) (0)

40.0

(59)

41.5

(59)

C-1

43.4

(68)

45.2

(68)

a. See footnote of table 1.

х

Ph

0

Y

0

Pħ

Compound

8

5

b. Tentative assignment.

The 2-phosphabicyclo[2.2.1]heptanes $(\underbrace{8}{2}-\underbrace{11}{2})$ are additional good model compounds for chemical shifts and ${}^{31}P_{-}{}^{13}C$ coupling constants correlations. The different J-values found for the particular carbon atoms in the pairs of this <u>rigid</u> series, support the assumption that the P=0 stereo-chemistry may affect the J_{P-C} values (although an explanation for this is difficult).¹⁰ As in the former series the geminal coupling constants seem to be more influenced by the structure than the vicinal ones. The CMR of both series is being further studied.

Other [1,n] dienes are being presently investigated in order to elucidate the scope of the described reaction.

43.8

(0)

43.2

(0)

37.5

(0)

36,9

(0)

c-6^b

31.5

(4.5)

31.1

(0)

C-7

50.1

(12)

50.4

(8)

50.6

(6)

49.4

(7)

C-8

14.9

13,9

14.0

14.2

(0)

(0)

(0)

(0)

C-9

24.1

(12)

23.5

(12)

24.3

(11)

23.8

(13)

References and Footnotes

- 1.a. E. Jungerman, J.J. McBride, R. Clutter and A. Mais, J. Org. Chem. 27, 606 (1962).
- b. J.J. McBride, E. Jungermann, J.V. Killheffer and R.J. Clutter, ibid, 27, 1833(1962).
- c. S.E. Cremer and R.J. Chorvat, ibid, 32, 4066(1967).
- 2. Y. Kashman, Y. Menachem and E. Benary, Tetrahedron, 29, 4279(1973).
- 3. 1,3-Dienes like 2,3-dimethylbuta-1,3-diene were also found to react with complex 1 ± 1 to give the corresponding phosphol-3-enes. However whether this reaction may have any advantage over the excellent cycloaddition of conjugated dienes with trivalent phosphorus halides have still to be established.
- Compound 3: m/e(%) 220(100,M⁺), 205(80,M-Me), 125(40,PhPOH); υ^{KBr}_{max} 3080,2970,1590, 1460,1440,1410,1310,1210,1175,1150,840,750,700 cm⁻¹; NMR(δ,P-decoupled): 0.52d (J=6 Hz,1H), 1.2d(J=6 Hz,1H), 1.3s(2CH₃), 2.3(4H), and 7.4-8.0(5H,Ph). NMR spectra were taken on a Jeol JNM-C-60HL spectrometer and mass spectra on a Du-Pont 21-491B instrument.
- 5. Compound $\underline{4}$: mass spectrum identical with that of $\underline{3}$. v_{max}^{KBr} 2900,1440,1410,1230,1200, 1170,1140,1110 cm⁻¹; NMR(δ ,P-decoupled): 0.35, AB quartet(2H), 1.3s(2 CH₃), 2.4 AB quartet(4H), 7.2-7.8(5H,Ph).
- 6. Y. Kashman and O. Awerbouch, Tetrahedron, 27, 5593(1971).
- 7. H.M. McConnell and R.E. Robertson, J. Chem. Phys. 29, 1361(1958).
- 8. Observations of Dreiding models show that the r and 6 values⁷ for the cyclopropane protons in both isomers are such that only small $\Delta\Delta\delta$ values are expected; hence the conformations of the phospholane moiety are of utmost importance.
- 9. Starting with PhPBr₂ AlBr₃ compound $\frac{7}{2}$ (X=Br) was obtained: m.p.187°, C₁₁H₁₃Br₂OP, NMR δ (P-decoupled): 2.0-2.3m(6H), 4.5dt(J=12, and 3.5 Hz) and 7.2-7.9m(Ph).
- 10. R.B. Wetzel and G.L. Kenyon, J. Am. Chem. Soc., <u>96</u>, 5189(1974).
- 11. G.A. Gray and S.E. Cremer, J. Org. Chem., 37, 3458, 3470(1972).
- 12. Compound <u>8</u>: $m/e(%)234(47,M^{+}),219(10,M-Me),206(20,M-28),140(100,PhP(OH)CH₃),125(50,$ $PhPOH,m*140 <math>\Rightarrow$ 125); v_{max}^{KBr} 1440,1210,1180,1110,830,750 cm⁻¹; NMR(δ ,P-decoupled): 1.0s(Me), 1.3s(Me), 1.4-2.2m(7H) 2.6bs(1H) and 7.2-8.0m(5H,Ph).
- Compound 9: mass spectrum identical with that of 8; ^{neat} 1450, 1440, 1210, 1170, 1110, 1050, 750 cm⁻¹; NMR(δ,P-decoupled): 1.3s(2 CH₃), 1.3-1.7m(4H), 1.9-2.5m(3H), 2.85bs (1H) and 7.3-8.0m(5H,Ph).